Autoreceptor-induced inhibition of neuropeptide Y release from PC-12 cells is mediated by Y2 receptors.
نویسندگان
چکیده
Pheochromocytoma (PC)-12 cells express Y1, Y2, and Y3 neuropeptide Y (NPY) receptors when differentiated with nerve growth factor (NGF). The present work evaluated NGF-differentiated PC-12 cells as a model system to study modulation of NPY release by NPY autoreceptors. We demonstrated that both K+ and nicotine stimulated concomitant release of NPY and dopamine from differentiated PC-12 cells. We also showed in this study that NPY release from PC-12 cells was attenuated in a concentration-dependent manner by peptide YY (PYY)-(13-36), a selective agonist for the Y2 type of NPY receptors. This result demonstrated that NPY release could be modulated by NPY autoreceptors of the Y2 subtype. The inhibitory action of PYY-(13-36) may be mediated at least in part by inhibition of N-type Ca2+channels, because PYY-(13-36) could not produce further inhibitory effects in the presence of a maximum effective concentration of ω-conotoxin, an N-type Ca2+-channel blocker. The inhibition by PYY-(13-36) could be blocked by pretreatment of cells with pertussis toxin, suggesting that an inhibitory GTP-binding protein was involved. Furthermore, the function of NPY autoreceptors could be modulated by other receptors such as β-adrenergic and ATP receptors. The evoked release of NPY was also attenuated by ATP and adenosine, which have been shown to be colocalized and coreleased with NPY from sympathetic nerve terminals. These results suggest that PC-12 cells differentiated with NGF may be an ideal model to study regulatory mechanisms of NPY release and that autoreceptor-mediated regulation of NPY release appears to act through the Y2 subtype of the NPY receptor.
منابع مشابه
Up-regulation of neuropeptide Y-Y2 receptors in an animal model of temporal lobe epilepsy.
Receptor autoradiography with the Y2 receptor ligand 125I-peptide YY3-36 and in situ hybridization were applied to investigate changes in neuropeptide tyrosine-Y2 receptor expression after kainic acid-induced recurrent seizures in the rat hippocampus. In the strata oriens and radiatum of CA1 to CA3, which are densely innervated by Y2 receptor-bearing Schaffer collateral terminals, a transient 2...
متن کاملProtein kinase C activity blocks neuropeptide Y-mediated inhibition of glutamate release and contributes to excitability of the hippocampus in status epilepticus.
The unbalanced excitatory/inhibitory neurotransmitter function in the neuronal network afflicted by seizures is the main biochemical and biophysical hallmark of epilepsy. The aim of this work was to identify changes in the signaling mechanisms associated with neuropeptide Y (NPY)-mediated inhibition of glutamate release that may contribute to hyperexcitability. Using isolated rat hippocampal ne...
متن کاملOpioid-like actions of neuropeptide Y in rat substantia gelatinosa: Y1 suppression of inhibition and Y2 suppression of excitation.
Neuropathic pain that results from injury to the peripheral or CNS responds poorly to opioid analgesics. Y1 and Y2 receptors for neuropeptide Y (NPY) may, however, serve as targets for analgesics that retain their effectiveness in neuropathic pain states. In substantia gelatinosa neurons in spinal cord slices from adult rats, we find that NPY acts via presynaptic Y2 receptors to attenuate excit...
متن کاملInhibition of synaptic transmission by neuropeptide Y in rat hippocampal area CA1: modulation of presynaptic Ca2+ entry.
Neuropeptide Y (NPY) agonists inhibit glutamate release by a presynaptic action at the CA3-CA1 synapse of rat hippocampus. We have examined the relationship between [Capre]t via presynaptic, voltage-dependent calcium channels (VDCCs), measured optically by using the fluorescent calcium indicator fura-2, and transmitter release, measured electrophysiologically. Activation of presynaptic NPY Y2 r...
متن کاملFasting inhibits the growth and reproductive axes via distinct Y2 and Y4 receptor-mediated pathways.
Neuropeptide Y, a neuropeptide abundantly expressed in the brain, has been implicated in the regulation of the hypothalamo-pituitary-somatotropic axis and the hypothalamo-pituitary-gonadotropic axis. Elevated hypothalamic neuropeptide Y expression, such as that occurs during fasting, is known to inhibit both of these axes. However, it is not known which Y receptor(s) mediate these effects. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 273 4 شماره
صفحات -
تاریخ انتشار 1997